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I. Executive Summary

This report addresses the rejection to confusers, the last piece of the work conducted under the
contract F33615-97-1019. Recall that in the previous report we ellucidated the performance of the
information theoretic feature extraction, and compared our method with the traditional (percep-
trons and template matchers) classifiers in the MSTAR database. But no performance evaluation
would be complete without assessing the quality of the new classifier in rejection to confusers.
Therefore we utilized the MSTAR database and the previous classifiers as the basis of our com-
parison. We are happy to report that the information theoretic feature extraction (ITL) works at
the same performance level as the very sophisticated support vector machine (SVM) for both mis-
classification error and rejection to confusers. However, we expect that our method will be more
widely applied since its use transcends classification: it is a general method to create features that
preserve as much information as possible w.r.t. to a given response. We have shown that the same
principle can be applied to classification and pose estimation, which shows the wide applicability

of the technique.

In order to make the report self contained we present an overview of the method and the results. I

also include in the next page the list of paper published funded by this work.
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I. Introduction

Automatic target recognition generally refers to the use of computer processing to detect and rec-
ognize target signatures in sensor data. The conventional ATR architecture comprises a focus of
attention (detector and discriminator) followed by a classifier [1]. The role of the focus of atten-
tion is to discard image chips that do not contain potential targets. In millimeter wave SAR the
focus of attention is traditionally implemented with a simple local intensity test [2] to exploit
radar scattering on metallic surfaces. To decrease the number of false alarms a discriminator stage
is also built in [1]. The focus of attention works very close to 100% detection rate. All the chips
that trigger the focus of attention are further scrutinized by the classifier. ATR classifiers can be
broadly divided into two types following the taxonomy in [3]: one class in one network (OCON)
and all class in one network (ACON), which is a different nomenclature for the parametric and
nonparametric training methodologies described in statistical pattern recognition [25, 30]. As the
name indicates, the OCON classifiers are built from each class independently of the others
through a statistical description of the class, while the ACON classifiers are developed using the
full class set. 'Hence, ACON classifiers are discriminantely trained, which presents some advan-
tages in training efficiency. A landmark example of OCON classifiers in ATR is the template
matcher [4]. Template matchers create a class prototype by matching a single class at different
pose angles. Therefore one needs many templates per target, and the classifier inplements a linear
discriminant function followed by a winner-take-all network (maxnet). It is easy to expand the
number of target classes by just developing extra templates. No modification is needed on the
developed templates. However, the big problem is that as more templates are added, the more
likely the classifier is to make mistakes, in particular when only partial class information is used

in the training (as in the matched filter).

The ACON classifier is trained with exemplars of every class using a non-parametric training
approach [5]. Classifiers are normally nonlinear, such as the radial basis functions (RBF) or mul-
tilayer perceptrons (MLP) which can create universal mappings between the input and the output.
The big advantage is that training is discriminant, i.e. one class is trained in the presence of all the
other classes. This means that the classifier has to be re-trained from scratch if one more class is
added to the problem domain, but the newly trained classifier has the possibility of choosing “fea-

tures” that best individualize each class with respect to all the others. Although performance also




degrades with the number of classes this degradation tends to be slower than with the template

matchers.

There is an intermediate class of classifiers where properties of the other classes are brought into
the training of an OCON classifier as a penalty term. The minimum average correlation energy
(MACE) filter appears as the best example of synthetic discriminant functions (SDF) classifiers
[14]. As we commented in a previous paper [6] the MACE is still a compromise between purely
template matchers and ACON classifiers, and it is not easy to pick criteria to decide how to best

train the MACE. Conventional design “guidelines” are sub-optimal [6].

It is important to analyze in more mathematical terms what is the difference between template
matchers and optimal classifiers. The answer is well known in communication theory [7] and sta-
tistical pattern recognition [30], and can be simply stated as followé: a template matcher is opti-
mal when all the classes are Gaussian distributed with the same covariance. In fact, assuming
Gaussian distributed classes [30] with equal a priori probabilities the discriminant function

becomes

g;(x) = =0.5(x—u) T, (x-u;) - 0.5log|B] + k

where u is the class mean, X is the covariance matrix. Therefore the general discriminant is a qua-
dratic function. Notice that when the covariance matrix becomes diagonal z, = o’I, the above
equation defaults to g,(x) = lx_—uz‘"f, which is a linear discriminant [30]. Linear discriminants are
also called distance classifierzscbecause they make decisions based on Euclidean distances from
the class mean. Obviously this is not the general case in real world data, so template matchers do
not exploit the information contained in the shape of data clusters, which makes them sub-opti-
mal. The optimal classifier for Gaussian distributed classes is the quadratic classifier [55], which
is an OCON design. Using quadratic classifiers for SAR-ATR is discouraged due to the large size
of the pattern space, and the little data available to train them [25]. Model based ATR as imple-
mented in MSTAR [8, 9] is also intrinsically an OCON design. More sophisticated OCON models
can be built based on mixture models [11], or Bayesian principles [10], but the lack of data is the
stumbling block. Hence, the issue is how much better can we do for SAR/ATR when the covari-

ance among the targets is exploited indirectly in ACON designs.

We compare here the performance of three different classifier methodologies that have been

developed recently in the Computational NeuroEngineering Laboratory (CNEL) at the University




of Florida, or that have not been evaluated in SAR/ATR. One of the CNEL classifiers is an
improved template matcher (OCON) that exploits multiresolution of the target signatures. We
were interested in evaluating the impact of multi-resolution eigenfeatures in performance. The
two ACON classifiers are built on two different philosophies of classification. The SVM classifier
proposed by Vapnik nonlinearily projects the data to a generally higher dimensional feature space
and sets the linear discriminant function by maximizing the margin; The other ACON classifier
projects the data to a smaller dimensional feature space using an information theoretic framework
developed at the CNEL to choose the subspace. Here the question is, what is preferable for high
performance in SAR/ATR: expansion of features followed by a linear classifier trained for large
margin, or projecting the data to a subspace determined to preserve maximally the information for
classification? All three classifiers are preceded by a pose estimator to divide the complexity of
the task by using the pose of the vehicle. This is also a novel feature in SAR/ATR classifier archi-
tecture that has the potential to improve performance and to simplify the computational cost of the
testing. We present experimental results obtained on the MSTAR database both for classification

and rejection of confusers and end the paper with conclusions.

I1. A Classifier Architecture for SAR-ATR

I1.1 Pose estimation
The information of the relative position of a target with respect to the sensor, termed the aspect

angle of the observation or the pose, is important to decrease the complexity of automatic target
recognition ATR. Finding discriminant features among vehicles is simplified if we first choose the
target views according to their pose. Effectively we are using a divide-and-conquer strategy to
decrease the complexity of the task. However, in SAR-ATR pose estimation is not-a simple task
due to the enormous variability of the scattering phenomenology among vehicles and across
poses. An example of this difficulty is the size of the PEMS (Predict-Extract-Match-Search) mod-
ule in MSTAR [13], where each target is described by a set of scattering centers. Instead of
attempting a model based strategy, we developed a statistical approach for pose estimation,
because we believe that statistics is still the most effective way to handle uncertainty and noise in

real world phenomena.

In previous papers by the CNEL group [47, 48], a novel pose estimation method was proposed

and formulated as the maximization of the mutual information between the aspect angle and the




output of a nonlinear mapper. Generally, pose estimation can be formulated in terms of maximum
a posteriori probability (MAP): a= argnzax fAlX(a|x) = argn;ax fax(a, x), where a is the
estimation of pose a, f, Al x(a|x) is the a posteriori probability density function (pdf) given the
image x, and f,y(a,x) is the joint pdf of the pose and image. So, the key issue here is to esti-
mate the joint pdf. The very high dimensionality of the image (size: 80x80), however, makes it
very difficult to obtain a reliable estimation. Dimensionality reduction (feature extraction)
becomes necessary. As shown in Figure 1, the output of the MLP will serve as the feature space
for pose estimation y = MLP(w,x) (w are the parameters of the MLP topology - 6400x3x2
or simply a perceptron 6400x2). Hence, instead of working directly on the input image, our pose
estimator becomes a = arg n;ax fAlY(a| y) = argr;zax fay(a,y) . The crucial point for this
pose estjmation scheme is how well y, which can be interpreted as a feature, conveys informa-
tion about the pose. To obtain an effective feature, we propose to maximize the mutual informa-
tion between the feature and the pose I(y, a) as the criterion to train the network so that the

feature conveys the most information about pose: W, inq1 =

argmax I(y= MLP(w,x),a).In
the results reported here, the joint pdf estimation used for network Kaining produces directly the
pose estimation. In [47] a more involved pose estimator (discrete angles) was proposed but the
results are identical to the ones obtained with this estimator. The difficulty of this approach is the
estimation of the mutual information directly from the data without assumptions on the pdf (infor-

mation potential field in Figure 1)

Figure 1. System Diagram

In the appendix we include a summary of our methodology for estimating the mutual information

between two data sets, and we will address it later when discussing the ITL classifiers. We con-




ducted extensive tests for a one-degree of freedom pose estimation of military vehicles using the
MSTAR Database [47,48]. Results are summarized in Table 1. We conclude that when the pose
estimator was trained with views of 2 vehicles (T72 and BMP2) at 3.5 degree increments, the
pose of other vehicles was estimated with an accuracy better than 5 degrees, and a standard devia-
tion of 3.80. Occlusion tests also showed the robustness of the pose estimator [42]. Another great
advantage of this pose estimator is its implementation simplicity. The MLP associates the input
with the pose with a simple matrix vector multiplication. Results for a 2-degree of freedom pose

estimation task using information theoretic learning are reported in [49].

Table 1: Pose estimation accuracy

pose error (standard

vehicle deviation) in degrees

bmp2_c21_test 2.96 (2.41)

t72_132_test 3.01 (2.66)
bmp2_9563 2.97 (2.35)
bmp2_9566 3.32 (2.44)
btr70_c71 2.80 (2.33)
t72_s7 3.80 (2.57)

11.2 A novel architecture for SAR-ATR classifiers

The conventional classifier design is based on the matched spatial filter approach, i.e. for each tar-
get of interest a template is created through training [4, 12]. The templates are created at 10
degree increments [12] (or less) because correlation, which is the basis of the test, degrades rap-
idly when there is a pose mismatch between the template and the input image. All the templates
are applied to the image chip under analysis and the image chip is classified to the class providing
the largest output [12]. These classifiers soon become computational prohibitive for reasonably
sized target sets (36 matched filters per degree of freedom). In order to decrease the number of

“templates” per class without sacrificing performance, the synthetic [14] or nonlinear discrimi-




nant functions are required because it is known that nonlinear systems normally provide better
generalization [36].

The advantage of knowing the pose for classification is that one could divide the task into two
stages: first find the pose of the object, and then, select a sub-classifier trained exclusively for that
pose range to perform the classification. Figure 2 shows the proposed classifier architecture. First
we implement a pose estimator that will select from a bank of classifiers the one that has been
trained for that particular pose. Due to the implementation simplicity of the trained pose estimator
(a matrix vector product), we further propose to include it in the focus of attention block. In our
proposal, the focus of attention will not only choose the image chips for further analysis but will

also provide a pose estimation to choose the appropriate classifier.

Here we build 12 classifiers per degree of freedom in the pose, eacﬁ spanning a 30 degree sector.
Since in the MSTAR database the target azimuth is known, and the targets are on the ground
plane, this corresponds to a one degree of freedom pose problem and only 12 OCON classifiers
per target class are necessary. We can even decrease this number further if we implement ACON

classifiers (12 classifiers overall)

vehicle 1
vehicle 2
vehicle...
vehicle k

Feature +
Classifier

Pose J

360
Estimator

selector
Figure 2 Classifier structure

The results presented in this paper deal with pose sectors of 30 degrees, i.e. for each sector a clas-
sifier trained only with the sector data is developed to classify targets. This division is a compro-
mise between the goal of decreasing the overall classifier complexity, the availability of data to
train the ACON classifiers, and overall performance. We did not optimize the sector size, but 30
degree sectors were chosen to emphasize the new approach of large angular sectors versus the 10
degree increments utilized in the spatial matched filters. Since our pose estimator has an accuracy
of 5 degrees, we can implement this architecture with large confidence (in fact the sectors overlap

by 10 degrees in our classifiers to cover the imprecision in the pose).




III. Classifiers Design

Two of the main difficulties faced when developing discriminant classifiers for ATR are the lack
of training data and how to guarantee generalization. In our opinion, optimal OCON classifiers
are out of question for SAR-ATR due to: (1) our lack of knowledge about the statistics of SAR
targets. (2) performance penalty by imposing Gaussian assumptions and constraints on the class
covariances. Nonparametric classifiers such as K-means [30] require too much data which is léck-
ing in SAR, so they should also be avoided. One promising alternative is the class of ACON clas-
sifiers, which are based on artificial neural networks (RBFs or MLPs). These mappers are
universal, implementing families of discriminant functions depending on their topologies [15].
MLPs can be readily trained with the backpropagation (BP) algorithm [33], and have been applied
to SAR-ATR with reasonable success [16]. However, one difficulty with MLPs trained with the
mean square error (MSE) is that this training procedure does not control generalization [20], and
more sophisticated training must be implemented. This becomes an issue for SAR-ATR and other

similar applications.

In this paper we will investigate improvements on template matchers by creating more features
about the target class using multiresolution analysis. We will also compare two different method-
ologies for ACON classifier design. One of the principles decouples the size of the input space
from the number of features by using a Gaussian kernel. The training is based on the concept of
maximizing the classification margin as proposed by Vapnik [20]. This SVM classifier has shown
very good performance but it has not been extensively tested in SAR/ATR [56]. The other meth-
odology is brand new and projects the data to a subspace such that the projection maximally pre-

serves the information between the desired response and the mapper output [42, 51].

I11.1 Multi-resolution decompositions

Detailed discussions of multiresolution are presented in texts on wavelets [17] and pyramidal
image processing [18]. While there are many possible reasons for representing an image at several
resolutions (or a signal at several scales), we have two main motivations. First, a given feature
may be best observed at some scale, but the appropriate scale may not be known. Second, several
features may be of interest, but no single resolution is satisfactory for all features. Note that in

template based classifiers for SAR-ATR, we utilize only one resolution to describe all the target

10




features. According to this view, developing templates at several resolutions should improve the

performance, because it will be a much more faithful representation of the target signature.

The discussion in this section shows how to decompose a raster scanned image using a cascaded
filter approach. The multiresolution components can be organized in a tree structure. One still
must choose the basis for decomposition and the appropriate components. We will present PCA-
M as an [2-energy oriented method for both selecting a basis function and for selecting compo-

nents.

Figure 3 shows a single decomposition filter (left) and the structure for a tree of M=3 levels (mid-

dle) and the corresponding synthesis tree (right).

2 D
w1 —>@——> s i L 1], =
_ L 5 P> || -» rr’
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Lo 3|13 o 1
Analysis Synthesis

Figure 3. Multiresolution decompositions.

Let us index each signal xm,k(n) such that the first index m € [0,..., M] denotes the level of decom-
position, and the second index k € [0,..., m-1] identifies one of the signals at that level. With this
nomenclature, the original signal is x(n)=x0,0(n), and the signals at the output of the first decom-
position filter are xl’o(n) and xlyl(n).

Each level contains a complete “fixed-resolution” representation of the original signal. In this

context, completeness implies perfect reconstruction.

X k(M) | _ | Fmen () | Tl Fma(?)
X, k(= 1) X+ 1,2k +1(1) X, k(= 1)

When a signal is represented by components at several levels, the representation is said to be
multi-resolution or multiscale. A component at a higher level is the output of several cascaded fil-

ters. The overall response of the cascade of filters is the convolution of a permutation w, or w,. A
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higher level signal operates over a longer scale of the input and can take advantage of a richer set
of interrelationships. A lower level component has a shorter scale response, but is updated more
frequently. The choice of level fixes a trade-off between spatial resolution and scale (richer set of

linear combinations of samples of [x(n),..., x(n - 2m + 1)]).

Principal Component Analysis (PCA)
PCA and Principal Component Analysis with Multiresolution (PCA-M) are linear transforms,

Ve = Tx, (D

The rows of T form the basis for the output space. Invertibility implies that the mapping preserves
all the information needed to (perfectly) reconstruct the original data. When T is invertible, the
basis represented by T is said to be biorthogonal. If the inverse of T is its transpose T = Tl, then

the matrix is said to be unitary and the basis is said to be orthogonal.

Given a square matrix A of full rank N, a statement of the eigenvalue problem is A = WAWT,
where A is a diagonal matrix of eigenvalues, A = diag(A;, A,,..., Ay), and W is the modal matrix
(matrix whose columns are the eigenvectors), W=[w1,..., Wsereos wN]. The modal matrix W is uni-

tary and diagonalizes the matrix A.

PCA with Multiresolution (PCA-M)
Although wavelets are complete representations, we would like to choose a basis that will con-

centrate as much as energy as possible in the lower subspace to provide robust features, that is,
features that are resilient to noise. Furthermore, how to choose the most useful tree structure for
the decomposition is generally unclear. Due to these facts we propose to integrate PCA decompo-
sitions with multi-resolution representations, which we called PCA-M. We propose using energy
as the criterion for multiresolution, which we know is optimal for signal representation, and we

hope to be highly adequate for classification due to the expansion across scale.

The combined constraints for an orthogonal multiresolution decomposition and principal compo-
nents analysis can be simultaneously met by using the iterated filter approach described in the

above section, but they are not adaptive (Haar basis) [19].

One of our desired capabilities for PCA-M was to extract highly compressed high-energy compo-
nents first, because it is more robust with respect to scaling shifts and produce high SNR features.

This goal forced us to sacrifice orthogonality among different resolution components, because, we

12




felt that orthogonality was less critical for classification than for reconstruction. The non-orthogo-
nal decomposition can be implemented with a partially connected network (Figure 4) using the
Generalized Hebbian Algorithm [15]. The GHA operates directly on the training set images,

being trained one image at a time.
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Figure 4. Multi-resolution PCA

Eigenvectors at a given resolution will be ordered by energy and are orthogonal. Eigenvectors
across different resolutions will not be orthogonal or necessarily ordered by energy. Again, the
reason for our approach is to accept loss of spatial resolution as long as there are high-energy
components to extract. After the highest energy components are identified, we seek to increase

spatial resolution by moving to a lower dimensional subspace.

A BMP2 Image and Components
AN

Input Components Comp 1 (scaled 8X)
Figure 5 A BMP2 image and components

A sample decomposition (middle) and a close-up of the first component (right) are shown in Fig-
ure 5. The middle display shows four level 3 components (approximation + 3 detail images), three
level 2 components (16 x 16 detail images), and three level 1 (32 X 32 detail images). The number
of components at each level is motivated only for comparison with approximation and detail sig-

nals in wavelet multiresolution analysis. The number of levels was chosen based on performance

in other applications [19].
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The classifier architecture is a OCON network followed by a maxnet (to find the maximum).
» Classifier Structure - The overall classifier is a parallel structure of 10 individual template

matchers per class. Each individual classifier operates on a single component of the input
image, and since there are three target classes, there are three outputs. The output with the
highest value corresponds to an intermediate classification of the image based on the given
component. The final classification is based on a simple majority vote among individual clas-
sifiers.

+ Classifier Weights - The network weights (templates) are the normalized averages for the
corresponding components of the training set images, e.g., the weights of the connections to
the output corresponding to the BMP-2 class are obtained by averaging the first components
of all the BMP-2 images. Hence we are implementing matched filters at different resolutions.

e Overall Classification - The final classification is based on a majority of equally weighted
votes among individual classifiers. A minimum number of votes can be used to set a threshold
for rejecting an image (detection) but here the outputs of the parallel networks are summed so

that classification and rejection are done only at this final stage.

I11.2 Support Vector Machines

The perceptron or MLP trained with the error back-propagation implements the empirical risk
minimization, because it only takes into consideration the performance in the training set. How-
ever, as indicated in [22], neither the perceptron criterion nor the MSE criterion would necessarily
lead to a minimum classification error in the test set, i.e. they do not guarantee good generaliza-
tion. In this section, a learning criterion for structural risk minimization [20] is considered. The
advantage of a SVM classifier is that it can decouple the number of free parameters of the learn-
ing machine from the input space dimensionality [24].

The Optimal Hyperplane

The training set is said to be separated by an optimal hyperplane (OH) if the following two con-
ditions are satisfied. First, all the samples are separated without error (keep the empirical risk
zero), and second, as illustrated in Figure 6, the distances between the closest vectors to the hyper-

plane are maximal. The separating hyperplane is described in the canonical form, i.e.,

i
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yw-x;+b)21,i=1,..,m ()

It is easy to prove that the margin between the two hyperplanes H,: w-x,+b=1 and
H,:w-x, +b=-11is d= 2/"w". Thus, to find a hyperplane that satisfies the second condition,

one has to solve the quadratic programming problem of minimizing ||w"2 , subject to constraint

2).

Figure 6. A two-class linearly separable problem (balls vs. triangles). The optimal hyperplane
(solid line) intersects itself halfway between the two classes, and keeps the margin maximal. The
samples across the boundary HI or H2 are support vectors.

The solution to this optimization problem is given by the saddle point of a primal Lagrange func-

tional,

m
1, n2
Lp = i"W“ - zai[yi(w'xi+b)_l] (3)
i=1
where o, i=1,...,m , are positive Lagrange rﬁultipliers. Since (3) is a convex quadratic program-
ming problem, this means that it is equivalent to solve a “dual” problem [23]: maximize L,,
subject to the constraints that the gradient of L, with respect to w and b vanish, which gives the

conditions
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w = zaiyixi

il

4)
zaiyi =0
i
Substituting (4) into (3), we get the dual problem of maximizing,
Lp=A"-1- %ATCA
ATy =0 )
A20

where AT = (0, Oy, ...0,,) is a parameter vector, lT = (1, ...m) is an m-dimensional unit
vector, YT =(y,,...,¥,,) is the m-dimensional label vector, and C is a symmetric m by m correla-
tion matrix with elements C,. =y, y X, -x ,i,j=1..,m. Notice that there is a Lagrange multi-
plier o for every training sample. In the solution, those points for which ¢ >0 are called
“support vectors” (SV), and lie on either H, or H, . The separating rule is, based on the Optimal

Hyperplane,

glx) = sgn( Z yiaix-xi+b] 6)

ie SV

Kernel Based Classifiers and SVMs

Until now, all the previous architectures create the decision functions that are all linear func-
tions of data. Then one may ask how can the above method be generalized to the case of a nonlin-
ear decision functions? One alternative is to map the data to some high dimensional feature space
using a mapping ¢ : R = E | There is evidence provided by Cover’s theorem [29] that a com-
plex pattern classification problem nonlinearily mapped onto a high-dimensional space is more
likely to be linearly separable than the original low-dimensional space. The advantage of this
method is that it decouples the numbers of free parameters of the learning machine from the input
space dimensionality. In this way, the decision rule of (6) is implemented in the new feature space,

1.e.,
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g(x) = Sgn[ >, ¥i00(x) - ¢(x,-)+bJ
ie SV

(7

By the Mercer’s condition, there exists a mapping ¢ and a symmetric function K(x,y) which has

oo

an expansion K(x,y) = 3 0,(x)¢(»), if and only if, for any f(x) such that [F(x)dx is finite,

. k=1
there exists,

(K »f0)f)dxdy 2 0
®)

The convolution of the inner product allows the construction of a decision function that is nonlin-

ear in the input space,

g(x) = sgn( 2 ;0K (x;, x) +b]
ie SV

®)

and this is also equivalent to a linear decision function in the high-dimensional feature space of

¢,(x), ..., §,,(x) . This learning machine is the so-called Support Vector Machine.

Training SVMs with the Adatron Algorithm

The so-called Adatron algorithm [26] was proposed to solve the quadratic programming problem
using the concept of adaptive learning. The basic idea of the Adatron algorithm is that, instead of
updating the weight w directly, one can update the Lagrange multipliers. Since the weight vector
now resides in the feature space defined by the kernels, they can not be accessed for direct update.
However, the multipliers are still accessible in the input space and can be updated. The Adatron
performs a gradient descent in the quadratic risk function. At each step the gradient of the risk
function is computed in the direction of one canonical basis vector, then the solution is updated. In
general, the Adatron algorithm implements a form of gradient descent in the convex risk function.

This fact was investigated in detail in the kernel Adatron with bias and soft-margin algorithm
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[27]. Compared with the numerical quadratic programming method, the kernel Adatron algorithm
can learn large margin decision functions in kernel feature space in an iterative “on-line” fashion.
The requirement is to store in matrix form the full input data. In the case of high dimensional
input space and few data samples, this storage is reasonable and it saves computations when com-

pared to the quadratic programming solution.

IIL.3 Information-Theoretic Criteria: Supervised Learning with Quadratic Mutual Infor-
mation

Learning and adaptation are intrinsically related to information theory [32, 35]. In general, a
learning rule should make full use of the information which is available in the data while avoiding
the use of any extraneous information directly or indirectly imposed by the solution. This is the
often discredited Laplace principle of insufficient reasoning, which was reformulated in Jeffreys’
uninformative priors [34], and finally scientifically formulated by Jaynes as the maximum

entropy (MaxEnt) principle [43].

Supervised learning utilizes two sources of information to train the learning machine: the input
data and the class labels, which are known in a training set. In classification, the output of a map-
ping should convey as much information as possible about the input with respect to the class
labels. The mutual information principle provides the answer. In the following, the basic idea of
entropy and mutual information will be reviewed briefly and how to train an MLP with MI will be

addressed.

Quadratic Entropy and Mutual Information

Shannon definition of information [37] is Hg(Y) = Jp(y)log l%y)dy, where p(y) is the probabil-
ity density function of the random variable Y. There are many more definitions of entropy using
the theory of means. In particular, Renyi’s entropy with order o/, which we will denote by Hg, is

defined as [38, 39]

Hp =

o= T5lo8 _Lfy(y)ady o>0,0# 1 (10)
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is called Quadratic entropy for convenience. In

Tfy(y)zdy

—o0

When o = 2, Hp,(Y) = —log

the appendix we describe a procedure to estimate quadratic entropy directly from data samples as

H({a;}) = Hpy(¥|{a;}) = —log| [ fy(»)’dy | = —logV({a;})

400

j G(y-a,6))G(y-a,6)dy = ZZG(a ~a;,26°)

1—1]—1

V({a;}) =

uMZ

N
P
where G(.) is a multidimensional symmetric Gaussian kernel. Effectively we are estimating qua-
dratic entropy by using a nonparametric estimator based on the integral of the pdf estimated with
Parzen windows [40]. Note that this is a very interesting expression since it tells that quadratic
entropy is associated with interactions among pairs of data samples a; and a;. The general form of
V({a;}) is a potential field, which we called an information potential. Maximizing entropy is
equivalent to minimizing the information potential. But how can we manipulate information on a
set of samples? We have to interpret the samples as outputs of mapper y;=a; [42]. Since the out-
puts are a function of the system parameters y = f{x,w), changing the parameters of the system
will change the relative position of the outputs in the output space, modifying the entropy of the
set. With another analogy from physics, the derivative of the potential field is a force, so if we
take the derivative of V(Y) w.r.t. a; we have an information force on sample i given by [42],

d

g, = ga;V({a ;1) . This can be interpreted as an error signal that can be incorporated in the back-
propagation algorithm [15] to change the MLP weights such that the entropy of the set is maxi-
mized (or minimized) in the output space. This provides a new, unsupervised principle to train
MLPs with information theoretic criterion, which we called Information Theoretic Learning
(ITL).

Still another information measure useful to quantify the entropy between pairs of random vari-

ables is mutual information. The mutual information between two variables Y, and Y, is the

Kullback-Leibler divergence [41] between the joint pdf and the factorized marginal pdf:

Fri,(V1¥2)
I(Y\, Yy) = K(fy,y,01 v2) fy,01)fy,(92)) = ”fylyz(yl,yz)log ny,7b 72

2" " dydy. (11
Fof oy (b
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where fy, y,(1> ¥y,) is the joint pdf, le(yl) and fyz()’2) are marginal pdfs. Kullback-Leibler diver-
gence between two pdf f(x) and g(x) is defined as:

= Ax)
K(f,8) = [f0)loghoods (12)

where implicitly the Shannon’s entropy is utilized. From (10) we can observe that unfortunately it
is not quadratic in the pdf so it can not be easily integrated with the Parzen window pdf estima-
tion. Therefore, a new divergence or distance measure between two pdfs which contains only qua-

dratic terms is needed. Based on the Euclidean difference of vectors inequality we can write

2 g2 o T
ll” + Iyl” - 2x"y 20 (13)

Hence, we can propose to estimate the divergence between two PDFs f(x) and g(x) based on the

Euclidean distance as

Ipp(f 8) = [0 dx+ [g(x) dx - 2[f(x)g(x)dx (14)

It is easy to show that I;,(f, g) 20 and the equality holds true if and only if f(x) = g(x)
(Jf(x)dx = Jg(x)dx = 1), so it is a definition for a distance between two pdfs, which we call
Euclidean Distance Quadratic Mutual Information (ED-QMI). We have examined the similarity
of Igp(f; g) with mutual information in a number of cases, and we conclude that they display the
same minima and maxima [51]. An added benefit is that Igp(f, g) can be computed from the infor-

mation potential, so we have a procedure to estimate mutual information directly from samples.

Supervised training of the MLP with quadratic mutual information
We can utilize the idea of Euclidean distance (ED) to express ED-QMI as

Igp(Y), ¥p) = (”fy v 2y 2) iy d’z)*(”fy )%y (Zz)zdzxdzz)'z(ﬁfy v, (21 )y (2)fy (22)"21"22)
172 1 2 172 1 2 (15)
Basically (15) measures the Euclidean distance between the joint pdf and the factorized margin-

als. With the definitions in the appendix it is not difficult to obtain
IED((Yp Yz)l)’) = VED(y)

N N ) N {
Z 2 V}jv,?j—Nz vV, VZ+Viv2
i=1

1 (16)
VED()’) = 3
Ni-1j=1
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where Vj; stands for the information potential in the joint field, and V; for the marginal potential.
It is also not difficult to obtain the formula for the calculation of the information force produced

by the cross information potential field Vgp as

ck=VE-VE-VE+Vk, k= 1,2

ij ij i
WVep -1 &
Fi== = =52 ciVid; (17)
Yi G i1

i=1,..,N, l#k, 1 =12

where cl’.‘j are cross matrices which serve as force modifiers.

In a supervised framework we would like to maximize the information between the class label
and the output of the MLP. So the joint space (Y1, Y5) is the spacé of the classes (c;) versus the
MLP outputs (y;), i.e. Yi={c},....cp) and Y,={yy,....yp}. Note that the class assignments are solely
used to estimate the marginal information potentials and the cross-information potential, so they

just provide a way of dividing the data. They do not provide numerical targets, which is in tune

with the a priori information available.

Once the MLP is trained, we can implement a classifier in different ways: either we use the train-
ing set MLP outputs to design a Bayes classifier by estimating the mean and covariances per
class, or we use again a Parzen estimator to estimate the likelihoods per class, or finally we can
train another MLP that uses the maximum information projections as the pattern space. Since the
pattern space is normally of much smaller dimension (typically 2 to 6 in our studies) any of the

methods works well. We will be testing the likelihood method using the Parzen estimator.

IV. Results and Discussion

Here we will present classification and recognition results obtained with the three classifiers pre-
sented in Section III: a linear classifier using principal component analysis with multiresolution as
the frontend (PCA-M), a support vector machine (SVM), and a classifier trained with quadratic

mutual information (QMI).

In this paper, synthetic aperture radar automatic target recognition experiments were performed
using the MSTAR database to classify three targets. The data are 80 by 80 SAR images drawn
from three types of ground vehicles: the T72, BTR70, and BMP2 as shown in Figure 7. These
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images are a subset of the 9/95 MSTAR (Moving and Stationary Target Acquisition and Recogni-
tion) Public Release Data, where the pose (aspect angles) of the vehicles lies between 0 to 360
degrees. Only target images are used here (there is no need for the focus of attention) so they will
be directly scored by the classifier. The classifier includes 12 sector classifiers (30 degree sec-
tors). Our results assume that the pose estimator is error free because during testing the data is

presented to the appropriate sector classifier.

We normalize to one the L2-norm of all the images from the training and testing sets. This pre-
processing was kept at a minimum because the targets in the MSTAR database were in the same
open field background, and the radar was carefully calibrated. The target chips were used directly
without re-centering nor masking of background to individualize the targets. If these operations
were performed better accuracy should be possible, but a longer effort would have been necessary

to conduct the testing.

The training set contained SAR images taken at a depression angle of 17 degrees, while the test-
ing set depression angle is 15 degrees. Therefore the SAR images between the training and the
testing sets for the same vehicle at the same pose are different, which helps to test the classifier
generalization. Variants (different serial number) of the three targets were also used in the testing

set, as illustrated in Table 2. The size of training and testing sets is 698 and 1365, respectively.

Table 2: Training and Testing Set

Training Set | Size Testing Set Size

T72(Sn_132) 232 T72(Sn_132) 196
T72(Sn_812) 195
T72(Sn_s7) 191

BTR70(Sn_c71) 233 BTR70(Sn_c71) 196

BMP2(Sn_c21) 233 BMP2(Sn_c9563) | 195

BMP2(Sn_c9566) | 196

BMP2(Sn_c21) 196

Each classifier was trained at its full potential. The QMI employs a single-layer perceptron with
80x80 input nodes and 3 output nodes. The SVM uses a RBF network and the three class classi-
fier is obtained by training in a pairwise fashion. The PCA multiresolution uses a 64x64 input

field analyzed by a set of 10 matched filters for each of the higher energy components of the three
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scales. The learning rates, and other free parameters in each method were fine tuned for best per-
formance. Although the classifiers were independently developed, they are using the same train-

ing and test data and the same problem specification, so their outputs can be directly compared.

(b)
Figure 7. () Target pose (b) Example of the data set (BMP2, T72, BTR70)

Classification Results

The base line for the comparison is the template matching method [12], presented in Table 3. Ref-
erence [12] describes a power normalized template matcher developed with templates at 10
degree increments and a mask individualizing the targets, but using the same MSTAR target mix.
The classification results of our three classifiers are summarized by confusion matrices through
Table 4 to 6. For all the four classifiers, a threshold was set for each method to keep the probabil-

ity of detection!, Pd, equal to 0.9 in the testing set (A Pd of 0.9 is typically used in MSTAR and

1. Probability of Detection (Pd) is defined here as number of targets detected / number of targets tested.
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recommended as a standard operating point). These tables present the actual counts per class, and

an overall classification performance is give in Table 7.

Table 3: Template Matching

BMP2 T72 BTR70
BMP2 483 9 59
T72 43 427 16
BTR70 4 0 188

Table 4: PCA-M

BMP2 T72 BTR70
BMP2 487 29 19
T72 66 441 25
BTR70 1 0 183
Table 5: QMI
BMP2 T72 BTR70
BMP2 509 12 4
T72 38 441 26
BTR70 1 0 192
Table 6: SVM
BMP2 T72 BTR70
BMP2 511 15 14
T72 31 453 10
BTR70 0 0 195

From the overall classification results in Table 7, we conclude that the multiresolution template
matcher (PCA-M) performance is slightly worse than the standard template matcher [12]. But the
difference here is that we do not use a template matcher every 10 degrees of pose (aspect angle),

but one every 30 degrees. This shows that using templates at different scales preserves classifica-

24




tion accuracy and is able to tolerate larger errors induced by pose estimation. For the two ACON
classifiers, the SVM gets the best classification accuracy, with a misclassification error of 5.13%,
closely followed by the QMI with a miscalssification of 5.93%. The two ACON classifiers are
better than either of the two template matchers. The reason has been attributed in Section II and

III to both nonlinear discriminant functions and discriminant training.

Table 7; Overall misclassification error

Classifier Error Rate
Template 9.60%
PCA-M 10.3%

QMI 5.93%
SVM 5.13%

While we were performing the ATR experiments, another group presented results with a SVM. In
[56], a SVM classifier was used to classify the same target mix in MSTAR, but using a polyno-
mial instead of a Gaussian kernel function. The reported misclassification errors are around 6.6%-

7.2%, slightly worse than our results.

Recognition and Confuser Rejection

A critical problem in ATR is how to discriminate between target and non-target vehicles, the so-
called confusers. When we cannot guarantee that all the vehicles found in the test set belong to the
training set classes, rejecting patterns with a low degree of membership to these classes becomes
important. In this experiment two non-target vehicles (confusers), D7 and 2S1, were added to the
testing set. In a sense, the confusers are especially hard cases of false alarms actually leaking into

the classifier. The size of both confuser sets is 274.

The rejection results are listed in Table 8. From the table, we conclude that our three classifiers
give better results of confuser rejection than the template matcher. Among them, the SVM gets
the best result, rejecting more than two third of all the confusers, while the standard template
method rejects 53.5% of confusers. This good performance of SVMs is attributed to the fact that
the Gaussian kernel function implements a local discriminant in feature space that tends to repre-

sent better the class. The MLP uses an intersection of hyperplanes which are global discriminants
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and tend to provide decision surfaces that do not represent well the clusters. This may explain the

reason why the QMI rejection is below that of the PCA-M.

Table 8: Confuser Rejection

Classifier Rejection
Template 53.5%
PCA-M 60.0%

QMI 54.5%
SVM 68.8%

To give an overall performance comparison among the classifiers tested, the receiver operating
characteristics (ROC) curves of the two ACON classifiers are shown in Figure 8-10. There are
two kinds of ROC curves of interest: one is Probability of detection (Pd) vs Probability of false

alarm (Pfal), and the other is Probability of correct classification (Pccz) vs Pfa.

1. Probability of false alarm (Pfa) is defined as the probability that a specific set of confusers will be
detected as targets, i.e., number of confusers detected / number of confusers tested.

2. Probability of correct class (Pcc) is defined as number of targets correctly classified / number of targets
tested.
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Composite Detection ROC Curve BMP2 Classification ROC Curve
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Figure 8 Template matching: Pd vs Pfa ROC curve (upper left) and Pcc vs Pfa ROC

curve. (from website: //www.standevalexp.vdl-atr.afrl.af. mil/New_MSE_Results)
The ROC curves for the PCA-M are not easy to construct because this classifier was built from
several independent classifiers for each resolution. Hence, multi-dimensional ROCs would be

needed to fully characterize the performance of the PCA-M classifier.
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Figure 9 QMI: Pd vs Pfa ROC curve (left) and Pcc vs Pfa ROC curve (right)
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Composite Detection ROC curve
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Figure 10 SVM: Pd vs Pfa ROC curve (left) and Pcc vs Pfa ROC curve (right)

One aspect to point out is that the ROC curve for the BTR70 is much better than the other two,
because the training and testing sets of BTR70 are from the same serial number (but at different
depression angle), while the testing sets of the other two targets are different variants from the

training sets (see Table 2).

Another interesting observation is that the SVM and QMI present very similar ROC curves. Actu-
ally, the two methods employ learning mechanism that are not as different as they may seem at
first. Although the SVM tries to minimize the confidence interval and maximize the classification
margin and the QMI maximizes the mutual information between class labels and classifier out-
puts, they share one common point. They try to extract as much information as possible from
pairs of training set samples by either using the kernel correlation matrix (SVM) or the cross-
information potential (QMI), which represent high order statistics information instead of the sec-

ond order statistics (Euclidean distance) used in the template matcher.

The shape of the discriminants is dictated by the learning machine topology and plays a major
role in rejection of confusers. The multilayer perceptron utilizes hyperplanes (global discrimi-
nants) while the SVM with Gaussian kernels uses local discriminants. In recognition applications,
a critical problem is how to protect the classifier against any potential confuser. One possibility to
define rejection is to quantify the degree of “membership” to the class, but it is very difficult to do
so since the true underlying probability density function is not available. A simple proxy is

obtained by thresholding the output of the classifier, which substitutes the pdf information by the
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class discriminant. This is what we implicitly do when varying the threshold to plot the ROC
curve. However, for meaningful results, class discriminants should be confined to the local area of
the pattern space where the samples are located, that is, the discriminants should be local. The
confuser rejection results of Table 8 showed that the SVM with Gaussian kernel, which imple-
ments a bounded “local” decision region in the input space, in fact obtains the best confuser rejec-
tion. The SVM maps a confuser far away from the “local” decision region onto a location close to
the origin of the feature space, which promises a reliable rejection. The template matcher is based
on a distance to the center of the cluster so it is also local. However, the QMI is here used to train
a MLP that possesses global discriminants (QMI can also train RBFs, but this topology was not
used here). Hence, although the MLP trained with QMI provides better classification performance
than the PCA-M classifier, it ranked under the multiresolution template matcher in confuser rejec-
tion. This result suggests that the decisive factor for high rejection to confusers lies more in the

neural network topology than on the training algorithm.

V. Conclusions

Our work proposes a novel architecture for SAR ATR that includes the pose estimator in the focus
of attention block. Our pose estimator based on information theoretic principles is accurate within
5 degrees in MSTAR data, and can be efficiently implemented with a vector matrix multiply. This
is one of the advantages of adaptive systems in frontend ATR. The time consuming step is the
training of the adaptive system, which is done off-line. Once the system is trained, the information
about the domain is stored in the adaptive weights, and a test can be done very fast. Hence, the
natural place to include the pose estimator is in the focus of attention block. This block will not
only flag image chips that are potential targets, but also will provide the pose. This concept can be
further explored to also classify man-made clutter and further improve the rejection of ATR sys-

tems.

We investigated here classifier designs for large pose sectors with the goal of decreasing the com-
putational complexity of template matchers without affecting (and eventually improving) classifi-
cation performance and rejection to confusers. ACON classifiers yield one classifier per sector
independently of the number of classes, so they are the most efficient design. When implemented

with nonlinear topologies they should be able to implement accurate classifiers. Still we would
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like to see if template matchers could handle large pose sectors, so we developed a new multi-res-

olution template matcher based on multi-resolution PCA.

We demonstrated the efficiency of our proposed classifier structure and the three methods of
learning and representation with a target mix from the MSTAR data set. An important result is the
excellent performance of our proposed QMI and SVM classifiers. The QMI chooses the projec-
tion from the input space to the output by maximizing the mutual information between the desired
response (the labels) and the output of the classifier, while the SVMs de-couples the numbers of
free parameters of the learning machine from the input space dimensionality. Either method pro-
vides high performance classifiers. In detection the higher performance of the SVM classifier is
attributed not to the training but to the local nature of the discriminant functions obtained with the
Gaussian kernels. In a different paper [53] we showed that the optimal hyperplane (a perceptron
trained with the Adatron algorithm), performs in detection at the same level as the perceptron
trained with ITL. Hence, we conclude that for detection, classifier topologies should be built with

local discriminant functions such as the Gaussian.

The PCA-M classifier is an intuitively appealing classifier structure, because it works with fea-
tures at several spatial scales. Here we only experimented with 3 scales, and utilized a very simple
equal weight voting strategy as input to the maxnet to choose the class. This scheme is too naive
and can be easily improved with a linear or nonlinear network that learns how to weight the differ-
ent contributions from each scale for best performance. Another issue that needs a more system-
atic treatment is the selection of thresholds for each scale. Nevertheless, this classifier shows that
multi-scale templates do provide good rejection and reasonable classification accuracy for sectors
as large as 30 degrees, which would be disastrous for the conventional template matcher. More

work needs to be done to improve the PCA-M.
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Appendix

Information Potential for Discrete Samples

Leta; e Rk, i = 1,...,N, be a set of samples from a random variable Y € Rk in k-dimensional
space. One interesting question is what will be the entropy associated with this set of data points.
One answer lies in the estimation of the data pdf by the Parzen window method using a Gaussian
kernel [40]:

N
) = 3 3, GO -a, 07 (18)

i=1

where G( , ) is the Gaussian kernel as above and 62 is the variance. When Shannon’s entropy
is used along with this pdf estimation, the measure becomes very complex to compute. Fortu-
nately, Renyi’s entropy with order 2 or quadratic entropy leads to a simpler form by using (10)
and we obtain the entropy measure for a set of discrete data points {a;} as:
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Making the analogy between data points and “particles”, V({a;}) can be regarded as an overall
potential energy since G(a; —a;, 2G") can be taken as the potential energy of “particle” a; in the
potential field of “particle” a;j, or vice versa. We will call this potential energy an information

potential. So, maximizing entropy in this case is equivalent to minimizing information potential.

Information Forces

Just like in mechanics, the derivative of the potential energy is a force, in this case an information
driven force that moves the data samples in the space of the interactions. Therefore,

9 G(a—a, 26°I) = —G(a; - a, 26°I)(a;— a;)/ (267 (20)
da; ~ ' i~ % i~ 4

can be regarded as the force Fj; that the sample a; impinges upon a;, and will be called an infor-
mation force (IF). If we add all the contributions of the IF from the ensemble of samples on a; we
have the net effect of the information potential on sample a;, i.e.
2 1 < 2 1 ¥
j=1

da; 2
i NG

“Force” Back-Propagation
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The concept of IP creates a criterion, which is external to the mapping topology (as an MLP). The
only missing step is to integrate the criterion with the adaptation of a parametric mapper as the
MLP. Suppose the samples y are the outputs of the MLP. If we want to adapt the MLP such that
the mapping maximizes the entropy at the output H(y), the problem is to find the MLP parame-
ters w;; SO that the IP V(y) is minimized. In this case, the IPCs are not free but are a function
of the MLP parameters. So, the information forces applied to each IPC by the information poten-
tial can be back-propagated to the parameters using the chain rule, i.e.

a N
V) = ,;[ VO )} z 2 gw,%) 22)
where a; = (a;y, ..., q; M)7 is the M-dimensional MLP output. Notice that from (22) the sensitiv-
ay.
ity of the output with respect to a MLP parameter % is the “transmission mechanism”

through which information forces are back-propagated to the parameter.

Cross-Information Potential for Discrete Samples

Now, suppose that we observe a set of data samples {ail, i=1,...,,N} for the variable Y,
{a;y, i= 1, ..., N} for the variable Y,. Let a; = (a;;» ,2) Then {a;,i= 1, ..., N} are data
samples for the joint variable (Y, ¥,)T. Based on the Parzen window method the joint pdf and
marginal pdf can be estimated as:

2 2.
fylyz()’p)’z) = z G(y;—a;;,0 )G()’z"aiz, (Ol
t—]

FrOn = 5 ZG(y1 a;1,0°) (23)
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Combining (20), (21) and using (11), we obtain the following expressions for the Quadratic
Mutual Information based on a set of data samples:
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In order to interpret these expressions in terms of information potentials we have to make some
further definitions: We will use the term marginal when the information potential is calculated in
a subspace, and partial when only some of the data points are used. With this in mind V({a;}) is
the overall information potential in the joint space, V,(a;, {a;})is the partial marginal informa-
tion potential because it is the potential of the point a; in its corresponding marginal information
potential field (indexed by 1). V,({a;}) is the marginal information potential because it averages
all the partial marginal information potentials for one index [, and V, ({a;}) is the un-normal-
ized cross-information potential because it measures the interactions between the partial marginal
information potentials.

“Forces” in the Cross-Information Potential

The cross-information potential is more complex than the information potential. Three different
potentials contribute to the cross-information potential. So, the force applied to each data point a,,
comes from three independent sources. A force in the joint space can decomposed into marginal
components. The marginal force of g (marginal space indexed by g) that the data point a,
received from three sources can be calculated according to the following formula:
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It is also not difficult to obtain the formula for the calculation of the information force produced

by the CIP field in the case of the Euclidean difference measure

ck=VE_VE-VE4VE k= 1,2

aVED
N 2.2 Ck Vl dl (26)

i=1,...,N, l¢k, =12
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